Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(2): 424-430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523100

ABSTRACT

Canopy spectral composition significantly affects growth and functional traits of understory plants. In this study, we explored the optimal light condition suitable for enhancing Scutellaria baicalensis's yield and quality, aiming to provide scientific reference for the exploitation and utilization of medicinal plant resources in the understory of forests. We measured the responses of growth, morphology, biomass allocation, physiological traits, and secon-dary metabolites of S. baicalensis to different light qualities. S. baicalensis was cultured under five LED-light treatments including full spectrum light (control), ultraviolet-A (UV-A) radiation, blue, green, and red light. Results showed that UV-A significantly reduced plant height, base diameter, leaf thickness, leaf area ratio, and biomass of each organ. Red light significantly reduced base diameter, biomass, effective quantum yield of photosystem Ⅱ (ФPSⅡ), and total flavonoid concentration. Under blue light, root length and total biomass of S. baicalensis significantly increased by 48.0% and 10.8%, respectively, while leaf number and chlorophyll content significantly decreased by 20.0% and 31.6%, respectively. The other physiological and biochemical traits were consistent with their responses in control. Our results suggested that blue light promoted photosynthesis, biomass accumulation, and secondary metabolite synthesis of S. baicalensis, while red light and UV-A radiation negatively affected physiological and biochemical metabolic processes. Therefore, the ratio of blue light could be appropriately increased to improve the yield and quality of S. baicalensis.


Subject(s)
Plants, Medicinal , Scutellaria baicalensis , Scutellaria baicalensis/chemistry , Scutellaria baicalensis/metabolism , Photosynthesis , Flavonoids , Chlorophyll/metabolism
2.
BMC Pediatr ; 24(1): 8, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172842

ABSTRACT

OBJECTIVES: To explore the clinical characteristics, postnatal treatment and prognosis of giant fetal hepatic hemangioma (GFHH). METHOD: Retrospective analysis was performed on children with giant fetal hepatic hemangioma (maximum tumor diameter > 40 mm) diagnosed by prenatal ultrasound and MRI from December 2016 to December 2020. These patients were observed and treated at the Children's Hospital of Fudan University after birth. The clinical data were collected to analyze the clinical characteristics, treatment, and prognosis of GFHH using independent sample t tests or Fisher's exact tests. RESULTS: Twenty-nine patients who were detected by routine ultrasound in the second and third trimester of pregnancy with giant fetal hepatic hemangiomas were included. The first prenatal ultrasound diagnosis of gestational age was 34.0 ± 4.3 weeks, ranging from 22 to 39 weeks. Of the patients, 28 had focal GFHHs and 1 had multifocal GFHHs. Surgery was performed, and the diagnosis was confirmed histopathologically in two patients. There were 8 cases with echocardiography-based evidence of pulmonary hypertension, 11 cases had a cardiothoracic ratio > 0.6, and 4 cases had hepatic arteriovenous fistula (AVF). The median follow-up time was 37 months (range: 14-70 months). During the follow-up, 12 patients received medical treatment with propranolol as the first-line therapy. The treatment group had a higher ratio of cardiothoracic ratio > 0.6 (P = 0.022) and lower albumin levels (P = 0.018). Four (14.8%) lesions showed postnatal growth before involuting. Complete response was observed in 13 (13/29) patients, and partial response was observed in 16 (16/29) patients. CONCLUSIONS: Fetal giant hepatic hemangioma is mainly localized, and its clinical outcome conforms to RICH (rapidly involuting) and PICH (partially involuting), but some fetal giant hepatic hemangiomas will continue to grow after birth and then gradually decrease. For uncomplicated giant fetal hepatic hemangioma, postnatal follow-up is the main concern, while those with complications require aggressive medical treatment. Propranolol may have no effect on the volume change of GFHH.


Subject(s)
Hemangioma , Infant, Newborn, Diseases , Liver Neoplasms , Pregnancy , Infant, Newborn , Child , Female , Humans , Infant , Propranolol/therapeutic use , Retrospective Studies , Hemangioma/diagnostic imaging , Hemangioma/therapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Liver Neoplasms/pathology
3.
World J Oncol ; 15(1): 81-89, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38274719

ABSTRACT

Background: The aim of the study was to employ a combination of radiomic indicators based on computed tomography (CT) imaging and machine learning (ML), along with deep learning (DL), to differentiate between adrenal hematoma and adrenal neuroblastoma in neonates. Methods: A total of 76 neonates were included in this retrospective study (40 with neuroblastomas and 36 with adrenal hematomas) who underwent CT and divided into a training group (n = 38) and a testing group (n = 38). The regions of interest (ROIs) were segmented by two radiologists to extract radiomics features using Pyradiomics package. ML classifications were done using support vector machine (SVM), AdaBoost, Extra Trees, gradient boosting, multi-layer perceptron (MLP), and random forest (RF). EfficientNets was employed and classified, based on radiometrics. The area under curve (AUC) of the receiver operating characteristic (ROC) was calculated to assess the performance of each model. Results: Among all features, the least absolute shrinkage and selection operator (LASSO) logistic regression selected nine features. These radiomics features were used to construct radiomics model. In the training cohort, the AUCs of SVM, MLP and Extra Trees models were 0.967, 0.969 and 1.000, respectively. The corresponding AUCs of the test cohort were 0.985, 0.971 and 0.958, respectively. In the classification task, the AUC of the DL framework was 0.987. Conclusion: ML decision classifiers and DL framework constructed from CT-based radiomics features offered a non-invasive method to differentiate neonatal adrenal hematoma from neuroblastoma and performed better than the clinical experts.

4.
Front Oncol ; 12: 756117, 2022.
Article in English | MEDLINE | ID: mdl-35574418

ABSTRACT

Wilms tumor is the most common renal malignancy in children. Known gene mutations account for about 40% of all wilms tumor cases, but the full map of genetic mutations in wilms tumor is far from clear. Whole genome sequencing and RNA sequencing were performed in 5 pairs of wilms tumor tissues and adjacent normal tissues to figure out important genetic mutations. Gene knock-down, CRISPR-induced mutations were used to investigate their potential effects in cell lines and in-vivo xenografted model. Mutations in seven novel genes (MUC6, GOLGA6L2, GPRIN2, MDN1, MUC4, OR4L1 and PDE4DIP) occurred in more than one patient. The most prevalent mutation was found in MUC6, which had 7 somatic exonic variants in 4 patients. In addition, TaqMan assay and immunoblot confirmed that MUC6 expression was reduced in WT tissues when compared with control tissues. Moreover, the results of MUC6 knock-down assay and CRISPR-induced MUC6 mutations showed that MUC6 inhibited tumor aggression via autophagy-dependent ß-catenin degradation while its mutations attenuated tumor-suppressive effects of MUC6. Seven novel mutated genes (MUC6, GOLGA6L2, GPRIN2, MDN1, MUC4, OR4L1 and PDE4DIP) were found in WT, among which MUC6 was the most prevalent one. MUC6 acted as a tumor suppressive gene through autophagy dependent ß-catenin pathway.

5.
Planta ; 252(5): 75, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33026530

ABSTRACT

MAIN CONCLUSION: Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.


Subject(s)
Cucumis sativus , Hypocotyl , Salicylic Acid , Cucumis sativus/enzymology , Cucumis sativus/growth & development , Enzyme Activation/drug effects , Gene Expression Regulation, Plant , Hypocotyl/enzymology , Hypocotyl/growth & development , Ligases/metabolism , Plant Roots/drug effects , Plant Roots/enzymology , Salicylic Acid/pharmacology
6.
Cancer Cell ; 38(5): 716-733.e6, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32946775

ABSTRACT

Neuroblastoma (NB), which is a subtype of neural-crest-derived malignancy, is the most common extracranial solid tumor occurring in childhood. Despite extensive research, the underlying developmental origin of NB remains unclear. Using single-cell RNA sequencing, we generate transcriptomes of adrenal NB from 160,910 cells of 16 patients and transcriptomes of putative developmental cells of origin of NB from 12,103 cells of early human embryos and fetal adrenal glands at relatively late development stages. We find that most adrenal NB tumor cells transcriptionally mirror noradrenergic chromaffin cells. Malignant states also recapitulate the proliferation/differentiation status of chromaffin cells in the process of normal development. Our findings provide insight into developmental trajectories and cellular states underlying human initiation and progression of NB.


Subject(s)
Adrenal Gland Neoplasms/genetics , Adrenal Glands/embryology , Gene Expression Profiling/methods , Neuroblastoma/genetics , Single-Cell Analysis/methods , Adrenal Glands/chemistry , Cell Differentiation , Cell Proliferation , Chromaffin Cells/chemistry , Chromaffin Cells/cytology , Gene Expression Regulation, Neoplastic , Humans , Phenotype , Sequence Analysis, RNA
7.
Front Plant Sci ; 7: 1952, 2016.
Article in English | MEDLINE | ID: mdl-28066499

ABSTRACT

Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases, which are one of the largest protein superfamilies in plants, and play crucial roles in development and stress responses. Although the evolution of LRR-RLK families has been investigated in some eudicot and monocot plants, no comprehensive evolutionary studies have been performed for these genes in basal angiosperms like Amborella trichopoda. In this study, we identified 94 LRR-RLK genes in the genome of A. trichopoda. The number of LRR-RLK genes in the genome of A. trichopoda is only 17-50% of that of several eudicot and monocot species. Tandem duplication and whole-genome duplication have made limited contributions to the expansion of LRR-RLK genes in A. trichopoda. According to the phylogenetic analysis, all A. trichopoda LRR-RLK genes can be organized into 18 subfamilies, which roughly correspond to the LRR-RLK subfamilies defined in Arabidopsis thaliana. Most LRR-RLK subfamilies are characterized by highly conserved protein structures, motif compositions, and gene structures. The unique gene structure, protein structures, and protein motif compositions of each subfamily provide evidence for functional divergence among LRR-RLK subfamilies. Moreover, the expression data of LRR-RLK genes provided further evidence for the functional diversification of them. In addition, selection analyses showed that most LRR-RLK protein sites are subject to purifying selection. Our results contribute to a better understanding of the evolution of LRR-RLK gene family in angiosperm and provide a framework for further functional investigation on A. trichopoda LRR-RLKs.

8.
CNS Neurosci Ther ; 18(5): 388-94, 2012 May.
Article in English | MEDLINE | ID: mdl-22533723

ABSTRACT

BACKGROUND AND PURPOSE: The glial water channel aquaporin-4 (AQP4) has been shown to be involved in a wide range of brain disorders. Although its important role in stroke has already been documented, the underlying mechanism was not clarified yet. Therefore, this study was designed to investigate the impacts of AQP4 deletion in ischemia/reperfusion (I/R). METHODS AND RESULTS: Herein we found a higher mortality and more severe neurological deficits in AQP4 knockout (AQP4(-/-)) mice after transient middle cerebral artery occlusion while no difference was observed in water content variation during I/R between two genotypes except a higher basal water content developed in AQP4(-/-) mouse brain, implying the same increment of water content over a higher basal level may provoke an even more elevated intracranial pressure, which might be an important cause of increased mortality in AQP4(-/-) mice. Moreover, AQP4 knockout aggravated I/R injury with enlarged infarct size and a more serious loss of CA1 neurons accompanied by a striking hypertrophy of astrocytes, suggesting an involvement of AQP4 in astrocytic dysfunction. CONCLUSIONS: Our findings provide direct evidence that AQP4 plays a crucial role in the pathogenesis of I/R injury, which may confer a new option for stroke treatment.


Subject(s)
Aquaporin 4/deficiency , Infarction, Middle Cerebral Artery/complications , Reperfusion Injury/complications , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain/pathology , Brain Edema/etiology , Brain Edema/genetics , Brain Edema/pathology , Brain Infarction/etiology , Disease Models, Animal , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Glial Fibrillary Acidic Protein/metabolism , Infarction, Middle Cerebral Artery/mortality , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Knockout , Nervous System Diseases/etiology , Nervous System Diseases/genetics , Neurons/metabolism , Neurons/pathology , Phosphopyruvate Hydratase/metabolism , Reperfusion Injury/mortality , Reperfusion Injury/pathology , Statistics, Nonparametric , Survival Rate , Time Factors
9.
Int J Neuropsychopharmacol ; 12(6): 843-50, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19203409

ABSTRACT

Our previous study revealed that aquaporin 4 (AQP4) knockout attenuated locomotor activity in cocaine exposure mice and reduced the extracellular dopamine levels in the nucleus accumbens, suggesting that AQP4 might participate in cocaine addiction. The aim of the present study was to investigate the impact of AQP4 on cell proliferation of dentate gyrus in the mouse hippocampus after repeated cocaine treatment and withdrawal. The immunohistochemistry results showed that repeated cocaine administration significantly decreased cellular proliferation in the subgranular zone, which was followed by a rebound increase after 2-wk withdrawal and a return to normal level after 3-wk withdrawal. AQP4 knockout resisted cocaine-induced reductions of neural cell proliferation. Further studies through immunohistochemistry and immunoblot analysis showed that AQP4 knockout sustained the levels of glial fibrillary acidic protein in the hippocampus, and suppressed the enhancement of extracellular signal-regulated kinase phosphorylation induced by repeated cocaine administration. Notably, AQP4 knockout increased protein kinase C activity examined by substrate protein phosphorylation method, which was not affected by cocaine administration or withdrawal. We also found that repeated cocaine administration could elevate the expression of AQP4 in wild-type mice. In conclusion, it is reported for the first time that AQP4 knockout resisted cocaine-mediated inhibition of neural cell proliferation via up-regulating PKC-mediated signal transduction, suggesting that AQP4 might regulate neurogenesis during drug addiction. Our findings may have helpful implications in the cell biology of neurogenesis.


Subject(s)
Aquaporin 4/deficiency , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Hippocampus/cytology , Neurons/drug effects , Analysis of Variance , Animals , Astrocytes/drug effects , Bromodeoxyuridine/metabolism , Cell Count/methods , Cell Proliferation/drug effects , Drug Administration Schedule , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/drug effects , Male , Mice , Mice, Knockout , Protein Kinase C/metabolism , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...